Abstract

Liquid plug therapies are commonly instilled in premature babies suffering from infant respiratory distress syndrome (IRDS) by a procedure called surfactant replacement therapy (SRT) in which a surfactant-laden bolus is instilled endotracheally in the neonatal lungs, dramatically reducing mortality and morbidity in neonatal populations. Since data are frequently limited, the optimal method for surfactant delivery has yet to be established towards more standardized guidelines. Here, we explore the dynamics of liquid plug transport using an anatomically-relevant, true-scale in vitro 3D model of the upper airways of a premature infant. We quantify the initial plug’s distribution as a function of two underlying parameters that can be clinically controlled; namely, the injection flow rate and the viscosity of the administered fluid. By extracting a homogeneity index (HI), our in vitro results underline how the combination of both high fluid viscosity and injection flow rates may be advantageous in improving homogeneous dispersion. Such outcomes are anticipated to help refine future SRT administration guidelines towards more uniform distribution using more anatomically-realistic 3D in vitro models at true scale of the preterm neonate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.