Abstract
Functionally efficient six degree of freedom (DOF) actuators have not yet been developed in a scale-invariant and inherently compliant unified form. This has primarily been due to the use of conventional serial or parallel kinematical configurations and electromagnetic motors, pneumatics and hydraulics. Contrary to traditional technologies, utilizing electro-active elastomers enables multi-DOF actuation and holonomic operation with minimal structural complexity. Conical dielectric elastomer actuators (DEAs) are compact multi-DOF actuator–sensors that are scalable and can be entirely polymeric, making them suitable for a variety of applications including minimally invasive medical devices. In this paper, cone DEAs are developed towards integrated 6-DOF actuation with muscle-like performance from a single structure. This is achieved by demonstrating the feasibility of holonomic 6-DOF actuation and through experimental characterization of a 5-DOF prototype. The 5-DOF prototype (50 mm length, 60 mm diameter) produced rotational actuation outputs of ±21.7° and ±9.42 mN m and linear actuation outputs of ±4.45 mm (±9.1%) and ±0.55 N. Finally, combined multi-DOF actuation is demonstrated as part of development towards scalable holonomic electro-active elastomer actuators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.