Abstract

In order to improve the dispersion of multi-walled carbon nanotubes (MWCNTs) in aqueous media, their surface functionalization was carried out in O2-fed low-pressure plasmas. Differently from what can be found in the literature of this field, homogeneous functionalization was achieved by generating the plasma inside vials containing the nanotube powders properly stirred. Experimental parameters, such as input power, treatment time and pressure, were varied to investigate their influence on the process efficiency. A detailed characterization of the plasma treated nanotubes, dry and in aqueous suspension, was carried out with a multi-diagnostic analytical approach, to evaluate their surface chemical properties, morphology, structural integrity and stability in the colloidal state. The plasma grafting of polar ionizable (e.g. acid) groups has been proved to successfully limit the agglomeration of MWCNTs and to produce nanotubes suspensions that are stable for one month and more in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.