Abstract

Modeling data as points on non-linear Riemannian manifold has attracted increasing attentions in many computer vision tasks, especially visual recognition. Learning an appropriate metric on Riemannian manifold plays a key role in achieving promising performance. For widely used symmetric positive definite (SPD) manifold and Grassmann manifold, most of existing metric learning methods are designed for one manifold, and are not straightforward for the other one. Furthermore, optimizations in previous methods usually rely on computationally expensive iterations. To address above limitations, this paper makes an attempt to propose a generalized and efficient Riemannian manifold metric learning (RMML) method, which can be flexibly adopted to both SPD and Grassmann manifolds. By minimizing the geodesic distance of similar pairs and the interpoint geodesic distance of dissimilar ones on nonlinear manifolds, the proposed RMML is optimized by computing the geodesic mean between inverse of similarity matrix and dissimilarity matrix, benefiting a global closed-form solution and high efficiency. The experiments are conducted on various visual recognition tasks, and the results demonstrate our RMML performs favorably against its counterparts in terms of both accuracy and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.