Abstract

A substantial fraction of archaeal genes, from ∼30% to as much as 80%, encode ‘hypothetical' proteins or genomic ‘dark matter'. Archaeal genomes typically contain a higher fraction of dark matter compared with bacterial genomes, primarily, because isolation and cultivation of most archaea in the laboratory, and accordingly, experimental characterization of archaeal genes, are difficult. In the present study, we present quantitative characteristics of the archaeal genomic dark matter and discuss comparative genomic approaches for functional prediction for ‘hypothetical' proteins. We propose a list of top priority candidates for experimental characterization with a broad distribution among archaea and those that are characteristic of poorly studied major archaeal groups such as Thaumarchaea, DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota) and Asgard.

Highlights

  • The drop of sequencing costs over the last decade has led to a dramatic increase in the influx of new genomes into public databases

  • Metagenomics has yielded more than 10 major new archaeal groups including most of the lineages in the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota) superphylum that include, mostly, unculturable archaea with small genomes, many if not most of them, symbionts or parasites of other archaea

  • The quality of the annotation depends on the quality of the computational analyses themselves and on the speed and completeness of the integration of new experimental data on protein functions integrated into annotation pipelines

Read more

Summary

Towards functional characterization of archaeal genomic dark matter

A substantial fraction of archaeal genes, from ∼30% to as much as 80%, encode ‘hypothetical’ proteins or genomic ‘dark matter’. Archaeal genomes typically contain a higher fraction of dark matter compared with bacterial genomes, primarily, because isolation and cultivation of most archaea in the laboratory, and experimental characterization of archaeal genes, are difficult. We present quantitative characteristics of the archaeal genomic dark matter and discuss comparative genomic approaches for functional prediction for ‘hypothetical’ proteins. We propose a list of top priority candidates for experimental characterization with a broad distribution among archaea and those that are characteristic of poorly studied major archaeal groups such as Thaumarchaea, DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota) and Asgard

Introduction
Quantitative characteristics of the archaeal dark matter
Uncharacterized conserved proteins
Genomic islands and dark matter genes
Representative locus tag Number of genomes
Membrane protein
Findings
Prospects and outlook
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.