Abstract

This paper describes ongoing work aimed at the construction of formal cost models and analyses that are capable of producing verifiable guarantees of resource usage (space, time and ultimately power consumption) in the context of real-time embedded systems. Our work is conducted in terms of the domain-specific language Hume, a language that combines functional programming for computations with finite-state automata for specifying reactive systems. We describe an approach in which high-level information derived from source-code analysis can be combined with worst-case execution time information obtained from abstract interpretation of low-level binary code. This abstract interpretation on the machine-code level is capable of dealing with complex architectural effects including cache and pipeline properties in an accurate way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.