Abstract

The origin of the helium-atmosphere DB white dwarfs is still a matter of debate. In particular, the question is unresolved whether binary evolution produces a significant number of DBs. The pulsating DB white dwarfs (DBV stars) offer a complementary insight into this problem through asteroseismology; DBs descending from binaries will have different interior structures than DBs originating from single stars (Nitta & Winget, 1998).GD 358 is by far the best-observed pulsating DBV star, and the only one for which asteroseismology has been performed to date. This star’s structure has been shown to be inconsistent with an origin from binary evolution (Nitta & Winget, 1998), but most of the other DBVs are relatively poorly studied.We therefore analysed archival data on all DBVs and obtained new measurements of stars with very little data available (Table 1), firstly to identify suitable targets for asteroseismological investigations and secondly to examine the pulsation spectra of the DBVs as a group, following the works of Clemens (1994) and Kleinman (1995) on the pulsating DA white dwarfs. Our study also produced new seismological results on individual stars and promising targets for future Whole Earth Telescope (WET, Nather et al., 1990) runs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.