Abstract
Remote sensing lidar point cloud dataset embeds inherent 3D topological, topographical and complex geometrical information which possess immense potential in applications involving machine-understandable 3D perception. The lidar point clouds are unstructured, unlike images, and hence are challenging to process. In our work, we are exploring the possibility of deep learning-based question-answering on the lidar 3D point clouds. We are proposing a deep CNN-RNN parallel architecture to learn lidar point cloud features and word embedding from the questions and fuse them to form a feature mapping for generating answers. We have restricted our experiments for the urban domain and present preliminary results of binary question-answering (yes/no) using the urban lidar point clouds based on the perplexity, edit distance, evaluation loss, and sequence accuracy as the performance metrics. Our proposed hypothesis of lidar question-answering is the first attempt, to the best of our knowledge, and we envisage that our novel work could be a foundation in using lidar point clouds for enhanced 3D perception in an urban environment. We envisage that our proposed lidar question-answering could be extended for machine comprehension-based applications such as rendering lidar scene descriptions and content-based 3D scene retrieval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.