Abstract
A novel design of a hybrid piezoelectric-electromagnetic harvester for vortex-induced vibration applications inside a pipe-flow is proposed. The piezoelectric energy harvester is modeled with a macro-fiber composite with an electromagnetic oscillator. Analytical and numerical models were developed for the fluid-structure interaction. An optimization study was conducted using finite element modelling across different bluff body shapes and orientations where triangle and 2.5x ellipse were optimal choices for maximizing energy harvesting properties. An investigation into dual-mass energy harvesting was also performed for bandwidth enhancement. A secondary beam has improved the piezoelectric performance by 21% to 52%. Finally, an experimental study was conducted to verify the narrowband resonance models and validate the use of a magnetically coupled dual broadband harvester (58% enhancement). Optimization and design of the harvester has led to improvements in performance that can realize powering sensors and devices in wireless applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.