Abstract
Abstract Low-carbon process planning is the basis for the implementation of low-carbon manufacturing technology. And it is of profound significance to improve process executability, reduce environmental pollution, decrease manufacturing cost, and improve product quality. In this paper, based on the perceptual data of parts machining process, considering the diversity of process planning schemes and factors affecting the green manufacturing, a multi-level evaluation criteria system is established from the aspects of processing time, manufacturing cost and processing quality, resource utilization, and environmental protection. An integrated evaluation method of low-carbon process planning schemes based on digital twins is constructed. Each index value is normalized by the polarized data processing method, its membership is determined by the fuzzy statistical method, and the combination weight of each index is determined by the hierarchical entropy weight method to realize the organic combination of theoretical analysis, practical experience, evaluation index, and process factors. The comprehensive evaluation of multi-process planning schemes is realized according to the improved fuzzy operation rules, and the best process planning solution is finally determined. Finally, taking the low-carbon process planning of an automobile part as an example, the feasibility and effectiveness of this method are verified by the evaluation of three alternative process planning schemes. The results show that the method adopted in this paper is more in line with the actual production and can provide enterprises with the optimal processing scheme with economic and environmental benefits, which may be helpful for more data-driven manufacturing process optimization in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Artificial Intelligence for Engineering Design, Analysis and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.