Abstract

The ultimate goal of radiation oncology is to eradicate tumours without toxicity to non-malignant tissues. FLASH radiotherapy, or the delivery of ultra-high dose rates of radiation (>40 Gy/s), emerged as a modality of irradiation that enables tumour control to be maintained while reducing toxicity to surrounding non-malignant tissues. In the past few years, preclinical studies have shown that FLASH radiotherapy can be delivered in very short times and substantially can widen the therapeutic window of radiotherapy. This ultra-fast radiation delivery could reduce toxicity and thus enable dose escalation to enhance antitumour efficacy, with the additional benefits of reducing treatment time and organ motion-related issues, eventually increasing the number of patients who can be treated. At present, FLASH is recognized as one of the most promising breakthroughs in radiation oncology, standing at the crossroads between technology, physics, chemistry and biology; however, several hurdles make its clinical translation difficult, including the need for a better understanding of the biological mechanisms, optimization of parameters and technological challenges. In this Perspective, we provide an overview of the principles underlying FLASH radiotherapy and discuss the challenges along the path towards its clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.