Abstract
behavior is often based on causal relations between certain events (e.g. If event 1 , then event 2 ). Consequently, those causal relations are also textually embedded in requirements. We want to extract this causal knowledge and utilize it to derive test cases automatically and to reason about dependencies between requirements. Existing NLP approaches fail to extract causality from natural language (NL) with reasonable performance. In this paper, we describe first steps towards building a new approach for causality extraction and contribute: (1) an NLP architecture based on Tree Recursive Neural Networks (TRNN) that we will train to identify causal relations in NL requirements and (2) an annotation scheme and a dataset that is suitable for training TRNNs. Our dataset contains 212,186 sentences from 463 publicly available requirement documents and is a first step towards a gold standard corpus for causality extraction. We encourage fellow researchers to contribute to our dataset and help us in finalizing the causality annotation process. Additionally, the dataset can also be annotated further to serve as a benchmark for other RE-relevant NLP tasks such as requirements classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.