Abstract

Warehouse logistics is a rapidly growing market for robots. However, one key procedure that has not received much attention is the unwrapping of pallets to prepare them for objects picking. In fact, to prevent the goods from falling and to protect them, pallets are normally wrapped in plastic when they enter the warehouse. Currently, unwrapping is mainly performed by human operators, due to the complexity of its planning and control phases. Autonomous solutions exist, but usually they are designed for specific situations, require a large footprint and are characterized by low flexibility. In this work, we propose a novel integrated robotic solution for autonomous plastic film removal relying on an impedance-controlled robot. The main contribution is twofold: on one side, a strategy to plan Cartesian impedance and trajectory to execute the cut without damaging the goods is discussed; on the other side, we present a cutting device that we designed for this purpose. The proposed solution presents the characteristics of high versatility and the need for a reduced footprint, due to the adopted technologies and the integration with a mobile base. Experimental results are shown to validate the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.