Abstract

It is shown that dynamical localization (quantum suppression of classical diffusion) in the context of ultracold atoms in periodically shaken optical lattices subjected to time-periodic modulations having equidistant zeros depends on the impulse transmitted by the external modulation over half-period rather than on the modulation amplitude. This result provides a useful principle for optimally controlling dynamical localization in general periodic systems, which is capable of experimental realization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.