Abstract
Analysis of cryopreserved peripheral mononuclear cells (PBMC) is important for evaluating new vaccines in immune based therapies and in pathogenesis studies. To ensure comparable assay results from different laboratories and points of time, collaborative research in multicenter trials needs reliable and reproducible cryopreservation protocols that maintain cell viability and functionality. Current cryomedia consist largely of fetal bovine serum (FBS), a natural mix of growth factors, cytokines, and undefined compounds. Standardized procedures are not possible, as FBS can affect the antigen-specific T-cell response, the most important parameter in functionality assays. Also, worldwide sample exchange is complicated by the strict import restrictions on FBS, because of transfection risk.After establishing a serum-free cryopreservation protocol that maintains cell viability, recovery and antigen-specific T-cell response of PBMC comparably to FBS-based cryomedia (Germann et al., 2011), the aim of this study was the complete avoidance of animal proteins and products in combination with efficient cryopreservation.As long-term stability of the cryopreservation process is crucial for retrospective evaluation of samples at different points of time, PBMC were analyzed after storage for maximal four weeks and again after approximately six months.The cryopreservation efficiency of the protein-free and fully chemically defined cryomedium was comparable to FBS-medium after storage for few weeks and several months. Directly after thawing, this medium yielded viabilities over 97% and recovery values over 84%. Also, the specific T-cell functionality was preserved. Additionally, short-term and six month cryopreservation gave comparable results. The fully chemically defined medium presented here will increase standardization and reproducibility of analysis in multicenter-studies or in retrospective evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.