Abstract

Realistic traffic modeling plays a key role in efficient Dynamic Spectrum Access (DSA) which is considered as enabler for the employment of wireless technologies in critical industrial automation applications (IAA). The majority of models of spectrum usage are not suitable for this specific use case as they are based on measurement campaigns conducted in urban or controlled laboratory environments. In this work we present a time-domain traffic model for industrial communication in the 2.4 GHz industrial, scientific, medical (ISM) band based on measurements in an industrial automotive production site. As DSA is usually implemented on Software Defined Radios (SDR), our measurement campaign is based on SDR platforms rather than sophisticated spectrum analyzers. We show through the estimation of the Hurst parameter that industrial wireless traffic possesses inherent self-similarity that could be exploited for efficient DSA. We also show that wireless traffic could be modeled as a semi-Markov model with channel on and off durations Log-normally and Pareto distributed, respectively. We finally estimate the parameters of the derived models using Maximum Likelihood estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.