Abstract

It is of the utmost importance to reduce flow-induced hemolysis in devices such as heart-valve prostheses and blood pumps. Thus, in vitro measurements of hemolysis are performed in order to optimize their design in this regard. However, with existing measurement methods, hemolysis can only be assessed as an integrated value over the complete test-circuit. Currently, there are no spatially-resolved in vitro hemolysis measurement techniques known to the authors that would allow for a determination of the critical regions within a device. In this study, a novel spatially-resolved measurement principle is proposed. Ghost cells (i.e. erythrocytes with a lower hemoglobin concentration) were loaded with a calcium-dicitrato complex, and a fluorescent calcium indicator was suspended in the extracellular medium. Calcium and indicator are separated until the cell membrane ruptures (i.e. hemolysis occurs). In the moment of hemolysis, the two compounds bind to each other and emit a fluorescent signal that can be recorded and spatially-resolved in a setup very similar to a standard Particle Image Velocimetry measurement. A proof-of-principle experiment was performed by intentionally inducing hemolysis in a flow-model with a surfactant. The surfactant-induced hemolysis demonstrated a clear increase of the fluorescent signal compared to that of a negative reference. Furthermore, the signal was spatially restricted to the area of hemolysis. Although further challenges need to be addressed, a successful proof-of-principle for novel spatially-resolved hemolysis detection is presented. This method can contribute to better design optimization of devices with respect to flow-induced hemolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.