Abstract

This paper examines an alternative approach to previously proposed models of prehistoric exchange such as the law of monotonic decrement or the down-the-line exchange model developed by Renfrew (Proceedings of the Prehistoric Society 34: 319–331, 1968, Renfrew 1977) to explain the distribution of obsidian across the Near East during the Neolithic period. Renfrew’s down-the-line model, which results in a very regular and clustered network, does not permit the circulation of obsidian to regions of the Near East that are further than 300 km from the source zones, as is shown in the archaeological data available. Obsidian exchange is a complex system where multiple factors interact and evolve in time and space. We therefore explore Agent-Based Modelling (ABM) so as to get a better understanding of complex networks. ABM simulations of an exchange network where some agents (villages) are allowed to attain long-distance exchange partners through correlated random walks are carried out. These simulations show what variables (population density, degree of collaboration between villages…) are relevant for the transfer of obsidian over long distances. Moreover, they show that a type of small-world exchange network could explain the breadth of obsidian distribution (up to 800 km from source) during the Near Eastern Neolithic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.