Abstract

This paper outlines a logic programming methodology which applies standardized logic program recursion forms afforded by a system of general purpose recursion schemes. The recursion schemes are conceived of as quasi higher-order predicates which accept predicate arguments, thereby representing parameterized program modules. This use of higher-order predicates is analogous to higher-order functionals in functional programming. However, these quasi higher-order predicates are handled by a metalogic programming technique within ordinary logic programming. Some of the proposed recursion operators are actualizations of mathematical induction principles (e.g. structural induction as generalization of primitive recursion). Others are heuristic schemes for commonly occurring recursive program forms. The intention is to handle all recursions in logic programs through the given repertoire of higher-order predicates. We carry out a pragmatic feasibility study of the proposed recursion operators with respect to the corpus of common textbook logic programs. This pragmatic investigation is accompanied with an analysis of the theoretical expressivity. The main theoretical results concerning computability are

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.