Abstract

The concept of a smart city requires the integration of information and communication technologies and devices over a network for the better provision of services to citizens. As a result, the quality of living is improved by continuous analyses of data to improve service delivery by governments and other organizations. Due to the presence of extensive devices and data flow over networks, the probability of cyber attacks and intrusion detection has increased. The monitoring of this huge amount of data traffic is very difficult, though machine learning algorithms have huge potential to support this task. In this study, we compared different machine learning models used for cyber threat classification. Our comparison was focused on the analyzed cyber threats, algorithms, and performance of these models. We have identified that real-time classification, accuracy, and false-positive rates are still the major issues in the performance of existing models. Accordingly, we have proposed a hybrid deep learning (DL) model for cyber threat intelligence (CTI) to improve threat classification performance. Our model was based on a convolutional neural network (CNN) and quasi-recurrent neural network (QRNN). The use of QRNN not only resulted in improved accuracy but also enabled real-time classification. The model was tested on BoT-IoT and TON_IoT datasets, and the results showed that the proposed model outperformed the other models. Due to this improved performance, we emphasize that the application of this model in the real-time environment of a smart system network will help in reducing threats in a reasonable time.

Highlights

  • The transformation of cities into smart cities is on the rise, where technologies such as the Internet of Things (IoT) and cyber–physical systems (CPS) are connected through networks for the better provision of quality services to citizens [1]

  • Improve threat analysis, and lower false-positive rates (FPRs), we propose a hybrid deep learning (DL) model that is based on a convolutional neural network (CNN) and quasi-recurrent neural network (QRNN)

  • We propose a hybrid DL model that consists of QRNN and CNN to improve cyber threat analysis accuracy, lower FPR, and provide real-time analysis

Read more

Summary

SAUDI ARAMCO

Cybersecurity Chair, Department of Networks and Communications, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

Introduction
Related Work
Proposed Model
Data Preprocessing
Model Implementation
Evaluation Tools and Metrics
Results and Analysis
Theoretical and Practical Implications
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.