Abstract
Additive manufacturing offers the opportunity to manufacture highly complex parts capable of providing improved performance, such as using lattice structures inside parts to reduce part weight. However, further research and development is required to improve the energy efficiency of the machinu85es, given the growing focus on sustainability and sustainable manufacturing. The purpose of this research is to address the interaction between part geometry, layer thickness, and printer type to minimize energy consumption for fused filament fabrication. This experiment was conducted with a Creality Ender 3, Monoprice MP Voxel, and Prusa i3 MK 3S + 3D printers using PLA filament, with two different part geometries and two settings for layer thickness. Active power during printing was recorded during warmup and printing. Energy consumption varied with printer type and layer thickness, while increased part complexity may lead to larger energy consumption. For printer selection, other factors may influence decision making of fused filament fabrication users such as quality and machine cost which have tradeoffs when compared to energy consumption. The first and second energy prediction models evaluated in this study had relatively large mean absolute error of 58 kJ and 29 kJ, when calculated using previously derived empirical coefficients and build time estimates calculated using slicing software, respectively. Our research suggests that improvements in the accuracy of energy prediction models are needed so such models can be applied to a range of printers. This research has implications for additive manufacturing service providers, makerspaces, as well as hobbyists who want to advance the sustainability of additive manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.