Abstract

With the rapid growth of user traffic, service innovation, and the persistent necessity to reduce costs, today’s mobile operators are faced with several challenges. In networking, two concepts have emerged aiming at cost reduction, increase of network scalability and deployment flexibility, namely Network Functions Virtualization (NFV) and Software Defined Networking (SDN). NFV mitigates the dependency on hardware, where mobile network functions are deployed as software virtual network functions on commodity servers at cloud infrastructure, i.e., data centers. SDN provides a programmable and flexible network control by decoupling the mobile network functions into control plane and data plane functions. The design of the next generation mobile network (5G) requires new planning and dimensioning models to achieve a cost optimal design that supports a wide range of traffic demands. We propose three optimization models that aim at minimizing the network load cost as well as data center resources cost by finding the optimal placement of the data centers as well the SDN and NFV mobile network functions. The optimization solutions demonstrate the trade-offs between the different data center deployments, i.e., centralized or distributed, and the different cost factors, i.e., optimal network load cost or data center resources cost. We propose a Pareto optimal multi-objective model that achieves a balance between network and data center cost. Additionally, we use prior inference, based on the solutions of the single objectives, to pre-select data center locations for the multi-objective model that results in reducing the optimization complexity and achieves savings in run time while keeping a minimal optimality gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.