Abstract

Internet of Things (IoT) is used to describe devices with sensors that connect and exchange data with other devices or systems on the Internet or other communication networks. Actually, the data not only represent the concrete things connected but also describe the abstract matters related. Therefore, it is expected to support trust on IoT since blockchain was invented so that trusted IoT could be possible or, recently, even metaverse could be imaginable. However, IoT systems are usually composed of a lot of device nodes with limited computing power. The built-in unsolved performance and energy-consumption problems in blockchain become more critical in IoT. The other problems such as finality, privacy, or scalability introduce even more complexity so that trusted IoT is still far from realization, let alone the metaverse. With general Proof of Work (GPoW), the energy consumption of Bitcoin can be reduced to less than 1 billionth and proof of PowerTimestamp (PoPT) can be constructed so that a global even ordering can be reached to conduct synchronization on distributed systems in real-time. Therefore, trusted IoT is possible. We reintroduce GPoW with more mathematic proofs so that PoPT can be optimal and describe how PoPT can be realized with simulation results, mining examples and synchronization scenario toward trusted IoT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.