Abstract
The catalytic conversion of glycerol to value-added propanols is a promising synthetic route that holds the potential to overcome the glycerol oversupply from the biodiesel industry. In this study, selective hydrogenolysis of 10 wt% aqueous bio-glycerol to 1-propanol and 2-propanol was performed in the vapor phase, fixed-bed reactor by using environmentally friendly bifunctional Pd/MoO3-Al2O3 catalysts prepared by wetness impregnation method. The physicochemical properties of these catalysts were derived from various techniques such as X-ray diffraction, NH3-temperature programmed desorption, scanning electron microscopy, 27Al NMR spectroscopy, surface area analysis, and thermogravimetric analysis. The catalytic activity results depicted that a high catalytic activity (>80%) with very high selectivity (>90%) to 1-propanol and 2-propanol was obtained over all the catalysts evaluated in a continuously fed, fixed-bed reactor. However, among all others, 2 wt% Pd/MoO3-Al2O3 catalyst was the most active and selective to propanols. The synergic interaction between the palladium and MoO3 on Al2O3 support and high strength weak to moderate acid sites of the catalyst were solely responsible for the high catalytic activity. The maximum glycerol conversion of 88.4% with 91.3% selectivity to propanols was achieved at an optimum reaction condition of 210 ∘ C and 1 bar pressure after 3 h of glycerol hydrogenolysis reaction.
Highlights
Alternate sustainable energy resources are vital because of dwindling petroleum reserves and mounting environmental alarms that are allied with fossil fuel exploitation
We report a viable catalytic strategy3for hydrogenolysis low-cost glycerol to valued bio propanols over bi-functional Pd/MoO
The of physisorbed water; the second mass loss region (II) around 250 ◦ C indicates the loss of coordinated prepared catalysts were labelled as xPd/Mo-Al, where x refers to Pd loading, Mo refers to MoO3, and water molecules; the fourth weight loss step (IV) between 450–500 ◦ C is attributed to the removal of
Summary
Alternate sustainable energy resources are vital because of dwindling petroleum reserves and mounting environmental alarms that are allied with fossil fuel exploitation. Alternative bio-based fuels have emerged as the long-standing solution as they are renewable and carbon dioxide neutral [1]. Biodiesel is one such alternative fuel which has received much attention with both demand and production tremendously increased over the last few years. The crude glycerol, if not handled properly, ends up as a waste product that has low value and is costly to purify in addition to jeopardizing the environmentally friendly nature of the whole biodiesel production process [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.