Abstract

A series of novel anthranilic acid derivatives I-IV, of which COOH-NH2 (I) and COOH-NHMe (IV) are endowed with acid and base bifunctionality, were designed and synthesized for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applications in dual polarity molecular imaging of biological samples, particularly for lipids. The heat of protonation, deprotonation, and proton transfer reaction as well as the capability of analyzing biomolecules in both positive and negative ion modes for I-IV were systematically investigated under standard 355 nm laser excitation. The results indicate correlation between dual polarity and acid-base property. Further, COOH-NHMe (IV) showed a unique performance and was successfully applied as the matrix for MALDI-TOF mass spectrometry imaging (MSI) for studying the mouse brain. Our results demonstrate the superiority of COOH-NHMe (IV) in detecting more lipid and protein species compared to commercially available matrices. Moreover, MALDI-TOF MSI results were obtained for lipid distributions, making COOH-NHMe (IV) a potential next generation universal matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.