Abstract

Deoxygenation of bioderived lipids into renewable transportation fuels is a promising route to decreasing the dependence on fossil sources. Ni-based catalysts are high performing and cost-effective in deoxygenation reactions but suffer from severe sintering and aggregation. Herein, a ligand-chelating impregnation method was used to prepare highly dispersed Ni nanoclusters on a two-dimensional (2D) ITQ-2 zeolite. Comprehensive characterization was utilized to monitor the changes in the organometallic precursors during activation and to investigate their impact on the dispersion of the Ni nanoclusters on the ITQ-2 zeolite. The high external surface area and abundant surface defects of the 2D support enhanced the dispersion and immobilization of the Ni nanoclusters and outperformed conventional zeolites. The protection of the Ni2+ cations by the organic ligand suppressed the aggregation of Ni species during the activation processes, thereby leading to the formation of uniformly distributed Ni nanoclusters on the ITQ-2 zeolite. Due to the highly dispersed Ni nanoclusters and immobilization on the 2D zeolite, the Ni/ITQ-2-co material prepared by the ligand-chelating impregnation approach showed outstanding activity and stability for conversions of stearic acid or palm oil to diesel range alkanes. This work provides a rational design and precise modulation of metal-based catalysts for the production of renewable diesel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.