Abstract
The interaction between an adsorbed 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][TFSA], ionic liquid (IL) layer and a Ag(111) substrate, under ultrahigh-vacuum conditions, was investigated in a combined experimental and theoretical approach, by high-resolution scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and dispersion-corrected density functional theory calculations (DFT-D). Most importantly, we succeeded in unambiguously identifying cations and anions in the adlayer by comparing experimental images with submolecular resolution and simulated STM images based on DFT calculations, and these findings are in perfect agreement with the 1:1 ratio of anions and cations adsorbed on the metal derived from XPS measurements. Different adlayer phases include a mobile 2D liquid phase at room temperature and two 2D solid phases at around 100 K, i.e., a 2D glass phase with short-range order and some residual, but very limited mobility and a long-range ordered 2D crystalline phase. The mobility in the different adlayer phases, including melting of the 2D crystalline phase, was evaluated by dynamic STM imaging. The DFT-D calculations show that the interaction with the substrate is composed of mainly van der Waals and weak electrostatic (dipole-induced dipole) interactions and that upon adsorption most of the charge remains at the IL, leading to attractive electrostatic interactions between the adsorbed species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.