Abstract

He-Ne ring lasers are, actually, the most sensitive devices for inertial rotation measurements. Depending on their linear dimensions, they find applications in different fields: from inertial navigation to structural engineering, from metrology to geophysics and fundamental physics. Here we report the recent progresses toward the development of GINGER- Gyroscopes IN GEneral Relativity, a triaxial ultra-sensitive ring laser gyroscope whose primary target is a ground measurement the Lense-Thirring effect, a small shift of the Earth rotation rate foreseen by Einstein's General Relativity. This target implies a measurement of the Earth rotation rate with a sensitivity better than one part over 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sup> and so requires a high level of stability and accuracy of the laser array and of the gyroscope stability. The main part of the research activity presented in this paper involves, then, a strict control of the systematic errors related to the fluctuation of the optical cavity geometry and of the laser parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.