Abstract

Over the last years, many smart buildings applications, such as indoor localization or safety systems, have been subject of intense research. Smart environments usually rely on several hardware nodes equipped with sensors, actuators, and communication functionalities. The high level of heterogeneity and the lack of standardization across technologies make design of such environments a very challenging task, as each installation has to be designed manually and performed ad-hoc for the specific building. On the other hand, many different systems show common characteristics, like the strict dependency with the building floor plan, also sharing similar requirements such as a nodes allocation that provides sensing coverage and nodes connectivity. This paper provides a computer-aided design application for the design of smart building systems based on the installation of hardware nodes across the indoor space. The tool provides a site-specific algorithm for cost-effective deployment of wireless localization systems, with the aim to maximize the localization accuracy. Experimental results from real-world environment show that the proposed site-specific model can improve the positioning accuracy of general models from the state-of-the-art. The tool, available open-source, is modular and extensible through plug-ins allowing to model building systems with different requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.