Abstract

We present numerical studies of femtosecond time-resolved probes of coupled wave packet dynamics in model polyatomic systems. Of specific interest is the possibility of using the structure and symmetry of the final states accessed by the probe field to discern vibrational energy flow. Simple wave packets can often exhibit classical localization, thus facilitating a mechanistic, trajectory-like picture of the quantum dynamics. This feature, however, does not necessarily survive in complex multidimensional problems due to differing quantum mechanical dephasing rates in different degrees of freedom. To recover a classical-like picture of energy flow between coupled vibrational modes, we introduce a final-state-resolved measure of wave packet dynamics, a low-frequency band-pass filter of the signal, which is specifically sensitive to intermode energy flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.