Abstract
When a piece of information (microblog, photograph, video, link, etc.) starts to spread in a social network, an important question arises: will it spread to "viral" proportions -- where "viral" is defined as an order-of-magnitude increase. However, several previous studies have established that cascade size and frequency are related through a power-law - which leads to a severe imbalance in this classification problem. In this paper, we devise a suite of measurements based on "structural diversity" -- the variety of social contexts (communities) in which individuals partaking in a given cascade engage. We demonstrate these measures are able to distinguish viral from non-viral cascades, despite the severe imbalance of the data for this problem. Further, we leverage these measurements as features in a classification approach, successfully predicting microblogs that grow from 50 to 500 reposts with precision of 0.69 and recall of 0.52 for the viral class - despite this class comprising under 2\% of samples. This significantly outperforms our baseline approach as well as the current state-of-the-art. Our work also demonstrates how we can tradeoff between precision and recall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.