Abstract

Modern CPU architectures provide a large number of processing cores and application programmers are increasingly looking at hybrid programming models, where multiple threads of a single process interact with the MPI library simultaneously. Moreover, recent high-speed interconnection networks are being designed with capabilities targeting communication explicitly from multiple processor cores. As a result, scalability of the MPI library so that multithreaded applications can efficiently drive independent network communication has become a major concern.In this work, we propose a novel operating system level concept called the thread private shared library (TPSL), which enables threads of a multithreaded application to see specific shared libraries in a private fashion. Contrary to address spaces in traditional operating systems, where threads of a single process refer to the exact same set of virtual to physical mappings, our technique relies on per-thread separate page tables. Mapping the MPI library in a thread private fashion results in per-thread MPI ranks eliminating resource contention in the MPI library without the need for redesigning it. To demonstrate the benefits of our mechanism, we provide preliminary evaluation for various aspects of multithreaded MPI processing through micro-benchmarks on two widely used MPI implementations, MPICH and MVAPICH, with only minor modifications to the libraries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.