Abstract

There has been long-standing interest in constructing reliable memory systems from unreliable components like noisy bit-cells and noisy logic gates, under circuit complexity constraints. Prior work has focused exclusively on constructive achievability results, but here we develop converse theorems for this problem for the first time. The basic technique relies on entropy production/dissipation arguments and balances the need to dissipate entropy with the redundancy of the code employed. A bound from the entropy dissipation capability of noisy logic gates is used via a sphere-packing argument. Although a large gap remains between refined achievability results stated herein and the converse, some suggestions for ways to move forward beyond this first step are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.