Abstract

AbstractAprotic lithium‐oxygen (Li‐O2) batteries represent a promising next‐generation energy storage system due to their extremely high theoretical specific capacity compared with all known batteries. Their practical realization is impeded, however, by the sluggish kinetics for the most part, resulting in high overpotential and poor cycling performance. Due to the high catalytic activity and favorable stability of Co‐based transition metal oxides, they are regarded as the most likely candidate catalysts, facilitating researchers to solve the sluggish kinetics issue. Herein, this review first presents recent advanced design strategies for Co‐based transition metal oxides in Li‐O2 batteries. Then, the fundamental insights related to the catalytic processes of Co‐based transition metal oxides in traditional and novel Li‐O2 electrochemistry systems are summarized. Finally, we conclude with the current limitations and future development directions of Co‐based transition metal oxides, which will contribute to the rational design of catalysts and the practical applications of Li‐O2 batteries. image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.