Abstract

This article provides an overview of several logic redundancy schemes, including von Neumann's multiplexing logic, N-tuple modular redundancy, and interwoven redundant logic. We discuss several important concepts for redundant nanoelectronic system designs based on recent results. First, we use Markov chain models to describe the error-correcting and stationary characteristics of multiple-stage multiplexing systems. Second, we show how to obtain the fundamental error bounds by using bifurcation analysis based on probabilistic models of unreliable gates. Third, we describe the notion of random interwoven redundancy. Finally, we compare the reliabilities of quadded and random interwoven structures by using a simulation-based approach. We observe that the deeper a circuit's logical depth, the more fault-tolerant the circuit tends to be for a fixed number of faults. For a constant gate failure rate, a circuit's reliability tends to reach a stationary state as its logical depth increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.