Abstract

A highly accurate and reliable screening method for enantiomeric excess of amine derivatives in the presence of water is reported. The fluorescence-based screening system has been realized by self-assembly of chiral diol-type dyes (BINOL, VANOL and VAPOL), 2-formylphenylboronic acid, and chiral amines forming iminoboronate esters. The structure and chirality of the amine analytes determine the stability of the diastereomeric iminoboronate esters, which in turn display differential fluorescence. The fluorescence signal reflects the enantiomeric purity of the chiral amines and was utilized in high-throughput arrays. The arrays were able to recognize enantiomeric excess of amines, amino esters, and amino alcohols. In addition to qualitative analysis, quantitative experiments were successfully performed. Studies of the role of additives such as water or citrate were carried out to gain insight into the stability of the iminoboronate esters. It is shown that the above additives destabilize less stable esters while the stable esters remain unchanged. Thus, the presence of water and citrate leads to increased difference between the diastereomeric iminoboronates and contributes to the enantiodiscrimination of the chiral amines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.