Abstract

Abstract The apparent cooling trend in observed global mean temperature series from radiosonde records relative to Microwave Sounding Unit (MSU) radiances has been a long-standing problem in upper-air climatology. It is very likely caused by a warm bias of radiosonde temperatures in the 1980s, which has been reduced over time with better instrumentation and correction software. The warm bias in the MSU-equivalent lower stratospheric (LS) layer is estimated as 0.6 ± 0.3 K in the global mean and as 1.0 ± 0.3 K in the tropical (20°S–20°N) mean. These estimates are based on comparisons of unadjusted radiosonde data, not only with MSU data but also with background forecast (BG) temperature time series from the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and with two new homogenized radiosonde datasets. One of the radiosonde datasets [Radiosonde Observation Correction using Reanalyses (RAOBCORE) version 1.4] employs the BG as reference for homogenization, which is not strictly independent of MSU data. The second radiosonde dataset uses the dates of the breakpoints detected by RAOBCORE as metadata for homogenization. However, it relies only on homogeneous segments of neighboring radiosonde data for break-size estimation. Therefore, adjustments are independent of satellite data. Both of the new adjusted radiosonde time series are in better agreement with satellite data than comparable published radiosonde datasets, not only for zonal means but also at most single stations. A robust warming maximum of 0.2–0.3K (10 yr)−1 for the 1979–2006 period in the tropical upper troposphere could be found in both homogenized radiosonde datasets. The maximum is consistent with mean temperatures of a thick layer in the upper troposphere and upper stratosphere (TS), derived from M3U3 radiances. Inferred from these results is that it is possible to detect and remove most of the mean warm bias from the radiosonde records, and thus most of the trend discrepancy compared to MSU LS and TS temperature products. The comprehensive intercomparison also suggests that the BG is temporally quite homogeneous after 1986. Only in the early 1980s could some inhomogeneities in the BG be detected and quantified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.