Abstract
This work reports a facile method for fabricating superhydrophobic surface on copper plate by AgNO₃ treatment and dodecyl mercaptan modification. The as-prepared superhydrophobic copper plate presents hierarchical and rough morphology composed of nanosheets and nanoparticleformed matrix. Meanwhile, long alkyl chains are assembled onto the rough surface successfully. Consequently, the copper plate is endowed with excellent superhydrophobic performance with a water contact angle of 156.8° and a rolling angle of ca. 3°. Moreover, the superhydrophobicity has long-term durability and excellent stability. Grounded on the strong water repellence, the resultant superhydrophobic copper plate surface exhibits multi-functions. The excellent performance can be well explained by "Cushion effect" and Capillary phenomena. As a result, water and corrosive species can be prevented from contacting with the copper plate surface, and contaminants can be taken away easily by the rolling water droplets. Meanwhile, the icing process of water is delayed on the superhydrophobic surface. Therefore, the superhydrophobic copper is endued with enhanced corrosion resistance, excellent self-cleaning and anti-icing performance. We believe that this facile method provides a simple and cost-effective process to improve the properties of copper plate, and which may see practical application of the superhydrophobic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.