Abstract

NMR chemical shielding anisotropy tensors have been computed, employing several basis sets and the GIAO-RHF and GIAO-MP2 formalisms of electronic structure theory, for all the atoms of the five and nine typical backbone conformers of For-Gly-NH2 and For-L-Ala-NH2, respectively. Multidimensional chemical shift plots, as a function of the respective backbone fold, have been generated for both peptide models. On the 2D 1HNH-15NNH and 15NNH-13Cα plots the most notable feature is that at all levels of theory studied the backbone conformers cluster in different regions. Computed chemical shifts, as well as their averages, have been compared to relevant experimental values taken from the BioMagnetic Resonance Bank (BMRB). At the highest levels of theory, for all nuclei but the amide protons, deviations between statistically averaged theoretical and experimental shifts are as low as 1–3%. These results indicate that chemical shift information from selected multiple-pulse NMR experiments (e.g., 2D-HSQC and 3D-HNCA) could directly be employed to extract folding information for polypeptides and proteins. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 882–900, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.