Abstract

Lithium-ion batteries (LIBs) are rapidly developing into attractive energy storage technologies. As LIBs gradually enter retirement, their sustainability is starting to come into focus. The utilization of recycled spent LIBs as raw materials for battery manufacturing is imperative for resource and environmental sustainability. The sustainability of spent LIBs depends on the recycling process, whereby the cycling of battery materials must be maximized while minimizing waste emissions and energy consumption. Although LIB recycling technologies (hydrometallurgy and pyrometallurgy) have been commercialized on a large scale, they have unavoidable limitations. They are incompatible with circular economy principles because they require toxic chemicals, emit hazardous substances, and consume large amounts of energy. The direct regeneration of degraded electrode materials from spent LIBs is a viable alternative to traditional recycling technologies and is a nondestructive repair technology. Furthermore, direct regeneration offers advantages such as maximization of the value of recycled electrode materials, use of sustainable, nontoxic reagents, high potential profitability, and significant application potential. Therefore, this review aims to investigate the state-of-the-art direct LIB regeneration technologies that can be extended to large-scale applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.