Abstract
Recent years have witnessed the prevalence of wearable devices. Wearable devices are intelligent and multifunctional, but they rely heavily on batteries. This greatly limits their application scope, where replacement of battery or recharging is challenging or inconvenient. We note that wearable devices have the opportunity to harvest energy from human motion, as they are worn by the users as long as being functioning. In this article, we propose a battery-free sensing platform for wearable devices in the form factor of shoes. It harvests the kinetic energy from walking or running to supply devices with power for sensing, processing, and wireless communication, covering all the functionalities of commercial wearable devices. We achieve this goal by enabling the whole system running on the harvested energy from two feet. Each foot performs separate tasks and two feet are coordinated by ambient backscatter communication. We instantiate this idea by building a prototype, containing energy harvesting insoles, power management circuits, and ambient backscatter module. Evaluation results demonstrate that the system can wake up shortly after several seconds’ walk and have sufficient Bluetooth throughput for supporting many applications. We believe that our framework can stir a lot of useful applications that were infeasible previously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.