Abstract

We develop a dynamics-based model of discrete movement for lateral manual interception capable of generating movements with realistic kinematics. For the present purposes, we focus on the situation of to-be-intercepted targets moving at constant speed along rectilinear trajectories oriented orthogonally with respect to the interception axis. The proposed phenomenological model is designed to capture the time evolution of empirically observed hand movements along the interception axis under different conditions of target arrival location and target speed-induced time pressure. Pattern formation dynamics combine a Duffing stiffness function, allowing for creating a fixed-point attractor at the perceived location of the target arrival on the interception axis, with a hybrid Rayleigh plus Van der Pol damping function. After parametrizing the model for required movement direction (left/right), amplitude, and duration, it adequately reproduces the (variations in) empirically observed kinematics with a single set of four coefficients for all conditions considered. The model is also demonstrated to inherently incorporate speed-accuracy trade-off characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.