Abstract

The metal coordination and spin state of the Fe(III) center in nitrile hydratase (NHase) has stimulated the synthesis of model complexes in efforts to understand the reactivity and spectroscopic properties of the enzyme. We report density functional theory (DFT) calculations on a number of Fe(III) complexes that have been prepared as models of the NHase metal center, together with others having similar ligands but different ground state spin multiplicities. Our results suggest that a DFT description of specific spin configurations in these systems does not suffer from significant amounts of spin contamination. In particular, B3LYP calculations not only reproduce the observed spin state preferences of these Fe(III) complexes but also predict spin-dependent structural properties consistent with those expected on the basis of ligand field models. An analysis of the natural bond orbital (NBO) transformation of the Kohn-Sham wave functions has enabled quantitation of the overall contribution to covalency of ligand-to-metal sigma-donation and pi-donation, and metal-to-ligand pi-back-bonding in these Fe(III) complexes at their BLYP-optimized geometries. Although sulfur ligands are the primary source of covalency in the Fe(III) complexes, our quantitative analysis suggests that hyperbonding between metal-bound nitrogens and an Fe-S bond represents a mechanism by which Fe-N covalency may arise. These studies establish the computational methodology for future theoretical investigations of the NHase Fe(III) center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.