Abstract

We develop a two-dimensional gravity path integral formulation of the Toverline{T} + Λ2 deformation of quantum field theory. This provides an exactly solvable generalization of the pure Toverline{T} deformation that is relevant for de Sitter and flat space holography. The path integral sheds light on quantum aspects of these flows in curved space, most notably the Weyl anomaly, the operator relation for the trace of the energy-momentum tensor, and the renormalization of the composite Toverline{T} operator. It also applies to both the Hagedorn and the holographic signs of such flows. We present explicit calculations for the torus and sphere partition functions that reproduce previous results in the literature, now in path integral language. Finally, we use the path integral representation in order to establish an explicit map with 3d gravity, and obtain new predictions for flat space holography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.