Abstract

Abstract Two types of nanosilica (NS) particles with different average particle sizes (20 nm and 80 nm in diameter, respectively) were used to fabricate epoxy–silica nanocomposites (ESNs) in this study. No significant differences in fracture behavior were observed between the epoxies filled with 20 nm NS particles and the epoxies filled with 80 nm NS particles. Interestingly, both types of NS particles were found to be more efficient in toughening epoxies than micron size glass spheres. As with micron size glass spheres, the fracture toughness of the ESNs were affected by the crosslink density of the epoxy matrix, i.e. a lower crosslinked matrix resulted in a tougher ESN. The increases in toughness in both types of ESNs were attributed to a zone shielding mechanism involving matrix plastic deformation. Moreover, the use of Irwin's formalized plastic zone model precisely described the relationship between the fracture toughness, yield strength and the corresponding plastic zone size of the various ESNs examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.