Abstract

Nanoionic based resistive switching memory cells are nowadays being implemented in novel memory technology known as Conductive Bridging Random Access Memory. These memory cells, known as programmable metallization cells, are a promising memory technology not only due to their scaling potential but also because of characteristics such as non-volatility, low-power operation and speed. Resistance switching in programmable metallization cells is related to the growth and dissolution of conductive metallic filaments in solid electrolytes. In this work, the effect of total ionizing dose on the solid-state electrolyte obtained after photodoping of chalcogenide based programmable metallization is investigated. Equivalent circuits of devices are extracted from impedance spectroscopy measurements and used to gain insights on the effect of ionizing radiation on these materials and structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.