Abstract

This paper proposes a new class of algorithms to compute the projection onto the set of images with a total variation bounded by a constant. The projection is computed on a dual formulation of the problem that is minimized using either a one-step gradient descent method or a multi-step Nesterov scheme. This yields iterative algorithms that compute soft thresholding of the dual vector fields. We show the convergence of the method with a convergence rate of O(1/k) for the one step method and O(1/k <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) for the multi-step one, where k is the iteration number. The projection algorithm can be used as a building block in several applications, and we illusrtate it by solving linear inverse problems under total variation constraint. Numerical results show that our algorithm competes favorably with state-of-the-art TV projection methods to solve denoising, inpainting and deblurring problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.