Abstract

Emerging nonvolatile memories (eNVMs) have demonstrated satisfactory accuracy on various applications in deep learning. Characterized by high density and low leakage power consumption, resistive random access memory (RRAM) becomes very attractive in synaptic devices for deep neural networks (DNNs). RRAM-based synaptic devices include both analog and discrete versions. Unlike analog RRAM synapses which suffer from nonlinearity, discrete but multistate RRAM synapses are better suited for neural network hardware implementation. In this article, the multistate operation in RRAM arrays has been proposed as a synaptic device for DNN inference. Four-state conductance has been achieved in HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> -based RRAM synaptic arrays. The impact of total ionizing dose (TID) on the multistate behavior of HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> -based RRAM is investigated by irradiating a one-transistor-one-resistor (1T1R) 64-kb array with CMOS peripheral decoding circuitry fabricated at the 90-nm technology node with Co-60 gamma rays ( <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">60</sup> Co γ-ray irradiation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.