Abstract

The no-wait job shop scheduling problem is a well-known NP-hard problem and it is typically decomposed into timetabling subproblem and sequencing subproblem. By adopting favorable features of the group search technique, a hybrid discrete group search optimizer is proposed for finding high quality schedules in the no-wait job shops with the total flow time criterion. In order to find more promising sequences, the producer operator is designed as a destruction and construction (DC) procedure and an insertion-based local search, the scrounger operator is implemented by differential evolution scheme, and the ranger operator is designed by hybridizing best insert moves. An efficient initialization scheme based on Nawaz–Enscore–Ham (NEH) heuristic is designed to construct the initial population with both quality and diversity. A speed-up method is developed to accelerate the evaluation of the insertion neighborhood. Computational results based on well-known benchmark instances show that the proposed algorithm clearly outperforms a hybrid differential evolution algorithm and an iterated greedy algorithm. In addition, the proposed algorithm is comparable to a local search method based on optimal job insertion, especially for large-size instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.