Abstract

Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the number of total dominating sets of $G$ of size $i$. Let $G$ be a connected graph constructed from pairwise disjoint connected graphs $G_1,ldots ,G_k$ by selecting a vertex of $G_1$, a vertex of $G_2$, and identify these two vertices. Then continue in this manner inductively. We say that $G$ is obtained by point-attaching from $G_1, ldots ,G_k$ and that $G_i$'s are the primary subgraphs of $G$. In this paper, we consider some particular cases of these graphs that most of them are of importance in chemistry and study their total domination polynomials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.